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Abstract - A model ror detenninll1g the ten,ik strength of parallel-lay ropes and bundles of parallel
elemenh hy meaIb of a prohahJiit\ theory is pre'ented. Rl'pes of a characteristic length are modelled
from the knowledgc of the 'tatistical properties or the constituent elements and the weakest-link
concept is cmplo\ ed to extcnd the results to long rope,. From the model. analysis of parallel-lay
ropes with non-linear ,tress strain relationships ean he carned out and the study of the variability
effects on the ropes. due to thc scatter in elemenh' characteristic,. is permitted. The variability in
the element stiffness has a profound elkct ('n the hundk strength. The scatter in the element cross­
sectional area incre'be, the hundle strength slightly. alhelt hy an insignificant amount. The results
from the model are contrasted with classical hundk them·v. and experimental data from parallel­
lay ropes made frnm Kevlar-49 aramid and high tenacity polyester yarm have been used to predict.
with reasonahle accuraC\. thc temJie strength heha\iour or the ropes.

I Il\TRO[)l CIION

Over the last few decades. progress in the polymer industry has led to the production of
materials with many desirable mechanical properties. These materials have found appli­
cations in diverse areas such as the civil and aeronautical engineering industries.

In the civil engineering industry. parallel-lay ropes made from high strength synthetic
fibres may soon be preferred for use in many ofTshore and bridge structures. They have
many advantages over steel and other traditional materials used in construction and could
be used to replace high tcnsile steel tendons and strands in many application areas. par­
ticularly where low weight and corrosion resistance are of prime concern (Burgoyne, 1988),
Parallel-lay ropes have also been identifled for use in cable stayed and suspension bridges,
cable supported roofs. prestressed concrete structures. deep water platforms. prestressed
brickwork and retaining walls (Burgoyne. 1999; Kingston. 1988; Lane and Kempton,
1988; Baxter. 1988).

Of all the various types of rope construction. parallel-lay ropes give the best conversion
efficiency from the properties of the elements to those of the ropes (Kingston, 1988). They
are composed of yarns which arc laid parallel to each other and to the axis of the rope
throughout the entire rope length; unlike twisted-lay (stranded) or braided rope construc­
tion. where serpentine or helical yarn paths are introduced. maximum use of the yarn
strength is achieved and the full stiffness of the constituent yarns is mobilized. Because of
the parallel construction. adverse properties such as low tension-tension fatigue per­
formance and abrasion. which are associated with the other forms of rope construction,
are avoided.

Parafil ropes are a type of parallel-lay rope made by Linear Composites Ltd. They
consist ofparallcl filamcnts contained within a non-structural polymeric sheath. A number
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of different yarns can be used in the core. but those ropes containing Kevlar-49, known as
Type G, or polyester, known as Type A. are of relevance here. All the tests referred to in
this work [and also that of Chambers (1986) and Guiman1es (1988b)] were carried out on
these ropes, or yarns taken from such ropes.

In parallel construction, the ability of broken elements to shed load to their neighbours
is greatly reduced; this is achieved in structured ropes by friction between adjacent elements.
There is little interaction between the individual yarns, and the ropes can be seen as an
aggregate of separate elements. However, the tensile strengths of the ropes are not accurately
predicted from the elements by simple averaging rules. This effect is more pronounced when
the elements are elastic, with high stiffness, as is typical in high performance ropes, and
also increases with variability in element strength. A random sample of apparently identical
elements shows a large scatter in strength and this has a profound effect on the strength of
the resulting bundle or rope (Pitt and Phoenix, 1981). The tensile strength efficiency (the
ratio of the bundle strength to the mean strength of elements) of fibre bundles decreases
monotonically with the increase in the element coefficient of variation (ratio of element
standard deviation to the mean strength) (Coleman, 1958). The variability in strength of
materials is attributed to flaws which are randomly distributed within the bulk of the
materials (Griffith, 1921). Thus, the failure event can be modelled as a stochastic process
and the probabilistic approach is adopted here.

Daniels (1945) used a stochastic process and studied bundles of thread made by parallel
construction; this is now generally referred to as the classical bundle theory. Daniels
developed an asymptotic result for such a rope. but the model was simple in that it only
applied to ropes with linear elastic elements and the only variable parameter was the
strength of the constituent elements. An application of Daniels' classical model to Parafil
Type G ropes by Chambers (1986) was unable to explain the rope behaviour.

Phoenix and Taylor (1973) and Phoenix (1974, 1975) considered more realistic models
of bundles of parallel elements where the strain of the elements, rather than the stress, was
used as the main statistical parameter. They introduced random slack into the model but
kept other parameters constant and developed an asymptotic result. This gives a specific
value for the bundle strength, but it has been observed by Guimanles (1988a, b) that there
is a size effect associated with Type Gropes.

In the models described above, fibres with linear stress-strain relationships and with
the same cross-sectional area, stiffness and stress-strain curve are assumed; however. tensile
tests of polymeric fibres show that fibres exhibit a large scatter in their cross-sectional areas,
and their stiffnesses do vary (Wagner et al.. 1984; Chambers, 1986; Wagner, 1989). A fibre
continuum study of bundles with linear elastic elements with linearly varying stiffnesses
also shows that the variation in the element stiffness may have a profound effect on the
strength of bundles of parallel elements (Hult and Travnicek, 1983). The variability in the
stiffness of the bundle elements can therefore not be ignored.

In this paper, a probabilistic model which can be used to predict the tensile strength
of bundles of parallel elements and parallel-lay ropes from the knowledge of the properties
of the constituent elements is presented. The cross-sectional area, the breaking strain and
the stiffness of the bundle elements, as well as the slack, are assumed as random variables.
The scatter in the elements' characteristics is then taken into account in order to study the
variability effect. The restriction on the element stress- strain behaviour is also relaxed so
that a polynomial can be used to represent the stress-strain behaviour, which allows the
model to be applied to ropes with non-linear stress-strain behaviour. To extend the model
to large ropes, the recently developed asymptotic result by Daniels (1989) is employed and
the convergence is compared with Monte-Carlo simulations.

The assumptions governing the probabilistic model do not remain valid when long
ropes are considered. As the length of the rope increases so does the interaction between
the elements. and the rope can no longer be considered as a bundle of parallel independent
elements. A long rope is therefore modelled in this paper as a series of small sub-bundles
with parallel elements. The length of the sub-bundles is considered as the characteristic
length of the rope. The weakest link concept is then employed to predict the strength of
long ropes.
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The authors are indebted to one of the reviewers of the paper for drawing to their
attention a work published after the original manuscript was prepared. Harlow and Yukich
(1993) used function-indexed empirical processes and deduced central limit theorems appli­
cable to fibre bundles. Their approach allows for a variety of new applications and
generalizations which are not obtained from previous studies.

2, BLNDLE STRENC,TH

2.1. Assumptions andf()rmulation oj" the model
Consider a bundle of n parallel elements (members) of the same type with varying

cross-sectional areas and stiffnesses. Assume that the bundle is clamped in such a way that
the elements have different slacks, and that load is applied to the bundle by means of
extension. Let the force strain relationship of each element be governed by an mth order
polynomial. Thus, the force strain relationship of an element is given by

'"
(p(o, ~:l" i.) = a I 'Y.j,).A-. (1)

where a is the element cross-sectional area and the vector ?:' = (:XI" .. , :Xm) represents the
coefficients of the polynomial of stress against strain.

If Z,(£) is the force in the ith element at bundle strain, I:, and 0, the initial slack strain
of the element, then

1

0
I

Z,(E) = t,Lt~ l:Xik(f:-IJ,jk

rJl

o:( I: < IJ,

(i,:(t:<O,+C

1:?cOI+("

(2)

where Cis the failure strain of the element i and {[, is the cross-sectional area of element i.
Assume that the element failure strains, (I' .... (1/' slack strains. 01 • ... , em cross­

sectional areas. a I ..... al/' and the coefficients of the polynomials :x'l< .... a~ are each
independent identically-distributed random variables with the density functions (dfs) and
cumulative distribution functions (cdfs) shown in Table I.

Assume also that for each element i, [(" 0
"

a,.:x:] are jointly distributed but independent
for the successive sets [(I.OI.a], :xi] j'{(2,(1>a2. 'l.~: .

The bundle load at bundle strain /; is given by

LI/(I:) = I Z,(I)
]

(3)

and the bundle strength is S,~ = L,~!nll", where L,~ is the maximum value achieved by L n(£),
i.e. sup {L II (£) ; c: ?c O} and fl., is the mean element area. If F (CO,a, a') is the joint distribution
function of the parameters ("O,.a" :x;. then the mean element load at bundle strain, £. is
given by ,

Tahle I Distribution functions for parameters
of the analysis

Random variahIe df cdf

hl~) HI~)

0 (/(0) G(O)

a /(0) J(a)
y' h(Y') 81Y')
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pee) = l:"[L,(B)] = f<p[a, '1:', (£-8)] dF«(, 8, a,~O, (4)

where E[x] is the expected value of the variable x, and the covariance function is expressed
as

(5)

From the definition of covariance we get

(6)

Equation (6) can also be written as

~

'P(f:,.!;:) = J<p[a,,(,(D I -fJ)]<p[a,'1:I .(£=-8)]dF(C8,a,t()-,u(i:j)J1(£1)' (7)

In order to simplify the analysis the following assumptions are also made:

(I) the distributions of the random variables (, 8, a and rJ.1 are independent;
(2) the coefficients of the polynomial'i.l of each element are dependent and are related

by a multinormal distribution.

The first assumption is made for simplification purposes. It is also unlikely that a joint
distribution function for all the parameters involved could be obtained. Neither is it likely
to expect any reliable data on dependencies. The second assumption is made because it is
unsatist~lctory to consider the coefficients of the polynomial ofeach element as independent.
Although there is no physical justification for choosing a multinormal distribution, it is the
most widely used multivariate distribution.

It is then possible to replace F((, 0, a,:X') by the product of the different cumulative
distribution functions (H, G, J and B) and-eqns (4) and (7) can then be written (Aman­
iampong, 1992) as:

and

'P(th t l) = Pla flOr'/lim

,,) {f. .. f[,t) rJ.,(D\ -firl
x [,t) rJ.i(i:= - OrldB(~/) }[ 1- H(tl - 8)] dG(8) - ,u(t I )J1(t2), (9)

where 8m"x is the maximum value of the slack strain, £, ~ t2 and J1la = fa" dJ(a).
The bundle strength can then be evaluated by one of the following methods.

(l) Exact solution: properties are assigned to each element and recursive formulae
are derived to solve the problem. Unfortunately, the mathematical complexities and the
accumulation of rounding errors in the subsequent calculations required even to evaluate
the strength of bundles with a small number of elements, and even in the "simple" case of
the classical bundle, make the method impractical (Daniels, 1945; Phoenix, 1974), and it
is not used here.
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E

Fig. I. Brownian hridge B(I:) on (E, E,,+a) superimposed on the curve -/I' 'Ij(£}.
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(2) Asymptotic method: this method applies to bundles of a large number of elements.
The failure process is superimposed on a curve near its maximum to evaluate the bundle
strength.

(3) Monte-Carlo simulation: the outcome of a process can be observed by randomly
assigning a value to an underlying variable. Such a practice is referred to as a Monte-Carlo
experiment. A Monte-Carlo simulation is then composed of, say, n such independent
experiments and by the virtue of the law of large numbers, observations made from a
sufficiently large number of the experiments will give a good measurement of the statistical
characteristics of the process. The failure process is therefore simulated by randomly
assigning properties to the elements to evaluate the bundle strength. The procedure is
repeated many times and statistical inferences are made about the bundle strength.

2.2. Asymptotic method
Since the bundle strength is dictated by the maximum value achieved by L,,(8), one

would expect the strength to be given by S:; = sup {p(8)!P,I' E ;? O}. However, this is not the
case, and for bundles of large number of elements, the results obtained by Daniels (1989)
on a Gaussian process whose mean path has a maximum are employed. The asymptotic
distribution of the bundle failure load and extension are deduced from the results for the
maximum, and the time at which the maximum is attained, of a general Gaussian process
superimposed on a parabolic curve near its maximum (Daniels, 1989).

The covariance function, eqn (9), can be converted to a statistical process given by

(10)

where C> 0 and ':0 ~ I:, ~ I:> The following cases arc then identified:

(1) when () = eX the process is a Brownian motion on (80' x);

(2) when () > 0 the process is a Brownian bridge on (Eo, 80 + b) ; and
(3) when () < 0 the process is proportional to a process Y analogous to a Brownian

bridge.

A Brownian motion W (t) on (0, x) is a stochastic process with W (0) = 0, mean
E[W(t)] = 0 and covariance function Cov[W(t,). W(t,)] = t, for t, ~ t2 . A Brownian
bridge B (I) on (0. T) is also a stochastic process with mean E[B (t)] = 0 and covariance
function Cov[B(t,), B(t,)] = t,(1-12!T), t] ~ t2, whereas the process Y(t) analogous to a
Brownian bridge on (0, T) is such that the mean is given as E[Y(r)] = 0 and the covariance
function Cov[Y(t,), Y(t2)] = t,(1 +I,T), t, ~ 1:- Details of these processes can be found
in Karlin and Taylor (1981).

By superimposing the process in eqn (10) on a curve - n I 211 (8) which has its minimum
at e(Fig. 1), where 11(r:) = 0 and the first derivative I]'(n = O. and expanding 1.JI(81' (;2) about
{within the range I:-I~= 0(/1 2'), the bundle strength can be deduced (Daniels, 1989).
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The values of C and b in eqn (10) are obtained (Daniels, 1989; Amaniampong, 1992)
from the relation:

(11)

where 1JI'(e l, (2) = DIJI!CEI and 'P(E:I' E2) = DlJli(7e2 •

For brevity, the quantities lJI(t, n, 1JI'(t, [) and 'P(t, t) are represented by IJI, IJI' and
'P and T = e- en. The following cases are then identified (Daniels, 1989; Amaniampong,
1992):

(I) if IJI' > 0 and 'P < 0 the system is defined by a Brownian bridge B(T) ;
(2) if IJI' > 0 and 'P = 0 the system is defined by a Brownian motion W(T); and
(3) if '¥' > 0 and 'P > 0 the system is defined by the process analogous to a Brownian

bridge Y(T).

In each case, C = IJI' - 'P.
By choosing l7(e) = /l(E) - /l(E*), we get ~)«:*) = 0 and ~(e*) = 0 so the conditions for

the curve _nl 217 (e) which is superimposed on the process are fulfilled, Here e* is the value
at which /l(E) achieves its maximum value. The maximum load carried by the bundle is
asymptotically normally distributed with expected value, E[L~], and variance, Var[L~],

given as

E[L~] = n/l(t)+pn l 'C 2 3[_/l,,([)]-IJ

Var[L,;] = nlJl(t, n, (12)

where t = e* and p = 0.99615 ... is a constant (Daniels, 1989). The mean and the variance
of the bundle strength are subsequently given (Amaniampong and Burgoyne, 1992) by

E[S~] = (/l(t) + pn 21 C 2 \ [ - /l"([)] - I;J}! /la

Var[S~] = 1JI(t;, n:n/l;', (13)

where /l" is the second derivative of the function /l.
To apply eqn (13) to the present bundle the following expressions for IJI', 'P, /l' and /l"

are first obtained (Amaniampong, 1992), using the method adopted by Daniels (1989) :

IJI~ = /l2" f'nlL l

li

m

e<1 {J. .. f[tl Y;i(I;-(})' I J

x LJI yM - ByJdB(~') }[1 -H(t - 8)] dG(B)

/l'(e) = /l" rmml'JJm,,1 {f··· rit Y;i(t:-8)' IJdB(~')}[I-H(e-B)]dG(B)
",0 oJ L, ~ 1

(14)

(15)

If S··· SL:"~ I Y;i(e - 8)' I dB(~') = V I and J... JL;"~ I yi(e- B)' dB(~') = V2, then
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Ji"(£) = Jio f"w",n",' {f. .. J[f, y,,iU-l)(£-fi)' 2 }B(Y,!)}

x [1-H(I;-I1)]dG(fi)+,uo [
lIl

li<II"'''' 2V,[-H'(e-8)]dG(ti)
~iJ
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+,uo ['1l1

'lI
m

,) VJ - H"(E - 8)] dG(8). (17)
~o

Equations (14)-(17) can be obtained by differentiating eqns (8) and (9) and noting
that E] ~ e2, ,u'UJ = O. lJl;. = ?lJl(f:. n;Z'/;, and 1jJ,. = Z'lJl(&', ;;);cCE2.

Equation (16) is used to find &' such that ,u'(e) = O. ,u"en, C = \P' - \jJ and ,uen are
obtained from eqns (17), (14) and (15). and (8) respectively. These values are then inserted
into eqn (13) to obtain the asymptotic bundle strength, which must be evaluated numeri­
cally, as described by Amaniampong (1992).

2.3. Monte-Carlo stu(~r oj' (he bundle strength
As stated previously, an exact evaluation of the bundle strength is impracticable

and therefore Monte-Carlo simulations can be used to study the behaviour of small and
moderately sized bundles. This is more practicaL but there is the drawback of having to
specify the probabilistic distributions and the numerical values for the associated parameters
of the element characteristics. The statistical distributions used for the present study were
obtained from the experimental results discussed by Amaniampong (1992) and Aman­
iampong and Burgoyne (1992).

For the Monte-Carlo simulation model adopted (Fig. 2), there is the need to specify
the correlation between the coefficients of the force-strain polynomials of the elements.
The means and the variances of the coefficients are also required. By specifying the numerical
values for the required parameters for the chosen statistical distributions representing the
failure strains, areas and slack of the bundle elements. the values (I,· .. , (n. a lo ··., ano

ti], ... ,fin and y,1, , ...• X;I can be generated.
Equations (2) and (3) are applied to evaluate Ln(e). the bundle load at strain E, and

the bundle strength, S,~ = sup: L,JE);n!l,,}. is obtained. where Ji" is the mean area of the
bundle elements. The process is repeated to generate a large number of S,~ and the data are
used with standard statistical inferences about the distribution of the bundle strength.

2.4. Strength oj'long ropes
The asymptotic and the Monte-Carlo methods discussed earlier refer to ropes of a

characteristic length. In this section consideration is extended to long ropes.
If an element of a bundle of parallel elements or a yarn of a parallel-lay rope fails, its

strain drops to zero and therefore relative movement between the elements ensues. Resist­
ance to the movement is developed because of adhesion. interlocking of the elements or
frictional effects.

Over a long rope. the resistance accumulates so that the strain in the failed element
develops to the same level as that in the neighbouring elements. There must exist a charac­
teristic length. t*, within which any element failure causes a loss in strength only over that
length; outside this length the element is fully effective.

A long rope is therefore idealized into a number of units, where the length of each unit
is that of the characteristic length. Within each unit, any broken element is assumed to
have lost its strength only over the unit but becomes fully effective outside that unit.

If the distribution of the strength for each uni t is given by the density function, q I (z),
with the cumulative distribution function

QI('::) = rI Ifi(.::)d.:: (18)

then, in accordance with the weakest-link concept. the probability density function of the
long rope with length 1= ml* is given by
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Input the degree of the force-strain polynomial and the
cOlrelations between the coefficients of the polynomial

Input the mean and the standard deviation of the element
areas and the Weibull parameters of the element failure

strains

Are
there initial

slacks?

Yes

Is
slack distribution

Gaussian?

No

Uniform slack distribution is
assumed. Input the parameters

No

Input the
mean and

the
standard
deviation

for the
slack

distribution

Generate a set of n random variates for the
areas, failure strains and the coefficients ofthe

force-strain polynomials of the elements

Find the max of {Ln} =L*n and evaluate S*n

Yes

Find the statistical parameters of S*n

Fig 2. Flow chart showing the algorithm for the Monte-Carlo simulations.

with the cumulative distribution function

(19)

(20)

The mean, Il, and the variance, (J=, of the strength of the long rope can then be calculated
from
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II = L, :::q",(:::) d:::

rr' = LJ (:::_p)2 q",(:::)d:::.
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(21)

Equation (21) is not easy to solve (even numerically) as m increases. It is therefore
convenient to introduce a new variable X = mQ I (:::) so that

As m increases

dX ( X\'" I
({",(:::) = -d 1- --) .

::: m/
(22)

. dX ( X)'" -- I
If",(:::) = hm -d- 1--

/11- f:: Nl

dX .
= --- e x

d:::
(23)

The mean, fl. and the variance, (J2. of the long rope therefore become

where::: is given asymptotically by Epstein (1948) as

In (lnm) +In (4n) (J,
::: = Ii, -rr,y(2Inlll)+(J, -- - ------ + ----; ---lnx·

2y (2Inm) .j(2Inm)

(24)

(25)

Here Ile and CJe are the mean strength and the standard deviation of the characteristic
length, respectively. Equation (24) can then be solved numerically by the Gauss-Laguerre
quadrature formula.

3. RESULTS

The results which follow are based on yarn data from tests carried out on Kevlar-49
aramid yarns and high tenacity polyester by Amaniampong (1992) and Amaniampong and
Burgoyne (1994). The stress-strain curve of the aramid yarns was best fitted by a third­
order polynomiaL but that of the polyester yarns was modelled with a fifth-order polynomial
without the third and the fourth coefficients (Amaniampong, 1992). The bundles refer to
Parafil Type G and A ropes. A yarn is considered as the basic element of the ropes.

Figure 3 shows comparisons between the results of the Monte-Carlo and the asymptotic
methods for Type G and A ropes. The failure strains of the yarns obey the conventional
two-parameter Weibull distribution (Amaniampong, 1992). The shape and the scale par­
ameters are 18.72 and 1.78% for Type G, and 15.30 and 11.29% for Type A yarns. The
strengths predicted by the asymptotic model are higher than those of the Monte-Carlo
method for the sizes of Type G rope considered. but the reverse is seen for Type A rope.
However, the differences are slight. the maximum being 2 and 1%, respectively.

The differences in the results can be attributed to the fact that the accuracy of the
Monte-Carlo simulations depends on the number of times the bundle strengths are gener­
ated. This is because the statistical inferences and estimates are made from this number of
generations; the greater the number of the bundle strengths generated the better the
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Fig. 3. Comparison of Monle-Carlo simulations with resulls from bundle theory.

estimates will be. Five hundred and 200 bundle strengths were generated for the estimation
of the mean strengths of the Type G and A ropes, respectively. Kolmogorov-Smirnov tests
conducted confirm that the bundle strengths are normally distributed for all the sizes of
ropes considered. The asymptotic results can be said to be valid for parallel-lay ropes with
as few as 50 elements, since the asymptotic bundle strength for 1.5 tonne Type Grope,
which is estimated to consist of 47 yarn elements, agrees well with the Monte-Carlo bundle
strength.

The mean strengths of 5 tonne Type A [not shown in Fig. 3(b)] and 6 tonne Type G
ropes estimated from the model are 821.6 and 2103.0 MPa, respectively. The corresponding
values from the tensile tests of the ropes are 820.5 and 2023.2 MPa (Chambers, 1986;
Amaniampong, 1992). Although the theoretical (model) results are slightly higher than the
empirical ones, the agreement is quite remarkable, giving maximum relative errors 01'0.1 and
4%, respectively. The validity of model prediction of bundle strength from the constituent
elements is therefore confirmed.

The standard deviations of the tensile strengths of 5 tonne Type A and 6 tonne Type
G ropes estimated from the asymptotic model are 9.20 and 33.59 MPa, respectively. The
corresponding experimental values are 38.70 and 26.84 MPa. The variability from the
model seems not to agree very well with the experimental values, particularly for Type A
ropes. Detailed analyses of the variability are presented by Amaniampong (1992).

In Fig. 4 the relationship between the bundle strength and the rope size as well as the
results from the classical bundle are presented. The failure stress of the rope decreases with
increasing rope size and becomes asymptotic to the failure stress of the classical bundle.



Tensile strength of parallel-lay ropes 3583
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In Fig. 5 there is a comparison between the asymptotic and empirical results from the
literature for Type G ropes (Chambers, 1986; Guimaraes, 1988b). The maximum relative
errors of the results lie in the range 4--11 %. Although there are differences, the theory
agrees reasonably well with the empirical results. The agreement is even better when the
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scatter in the rope strength is taken into consideration. The tensile tests of Type Gropes
were done after pre-conditioning the ropes. i.e. the ropes were pre-tensioned before the
tensile tests were carried ouL but the yarns used in the theory were not pre-conditioned.
Pre-conditioning is known to affect the behaviour of synthetic materials (Northolt and Van
der Haul, 1985) and this could account for the differences. The numbers of yarns per rope
for the tested ropes are not given in the literature. so the numbers assumed for the analysis
may actually be differenL which would also affect the results.

Figure 6 shows the effect of random clement slack on the bundle strength. A uniformly
distributed random slack was assumed for the clements; the parameters used are shown in
Fig. 6. Although a specific slack distribution is desirable. such a distribution is dependent
on the manufacturing process. to which access was not permitted. The uniform distribution
is chosen mainly because it gives well-defined upper and lower bounds. Other slack dis­
tributions can be used. but it is expected that the trend of results will be essentially the
same. The variability in the element slack has a profound reducing effect on the strength of
the bundle. For instance. introducing a uniform slack distribution with a maximum slack
of a quarter of the strain Weibull scale parameter reduces the bundle strength by about
6°1.), The introduction of a constant slack. however. has no effect on the bundle strength,
since a constant slack corresponds only to a displacement on the strain axis.

The effect of the variability in the element cross-sectional area on the strength of
parallel-lay ropes is shown in Fig. 7. At low variability (coefficient of variation < 10%) in
the cross-sectional areas there is an insignificant effect on the bundle strength. but there is
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a mild increase in bundle strength as the scatter in the cross-sectional areas of the elements
increases. The resulting increase in the bundle strength is milder for large ropes. An
appreciable effect is observed only for small bundles with very high coefficients of variation
in area.

In Fig. 8. the effect of the variability of element stiffness is depicted. Different effects
are observed for Type G and A ropes; whereas the strength of Type G ropes increases as
the scatter in the element stiffness increases. the reverse is observed for Type A ropes. This
is probably related to the degree of the stress-strain polynomial used. The effect is not
negligible and therefore any calculation based on the assumption that the elements have
constant stiffness may grossly over- or under-estimate the strength of the rope.

The effect of the length on the bundle strength is shown in Fig. 9. Increasing the length
of the rope reduces the strength; however. the reduction in strength with increasing length
is milder for the large ropes than for the smaller ones. This is because the variability in
strength at the characteristic length is higher in smaller ropes than in larger ones.

A parallel-series model is used to predict the strength of long ropes. The longer the
rope. the more chance there is of a weak link. Larger bundles. with more elements, more
closely approximate the infinite distribution of fibre strength. so variability of strength
reduces as the rope gets larger. This in turn means that the distribution of link strengths is
lower. so the weak link effect is less pronounced. A further demonstration of the effect is
given by Burgoyne and Flory (1990). The characteristic length of Type G rope is estimated
as 6.2 m (Burgoyne and Flory. 1990). By using this value. it is predicted that a 6 tonne
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Type G rope loses about 5% of its characteristic strength (strength at length shorter than
6.2 m) over 3 km. whereas a 60 tonne rope loses only about 2% of its characteristic strength
over the same length, It would then follow that large ropes of reasonable length fail at
higher stresses than small ropes. which is a reverse of the effect observed on short specimens
tested in the laboratory.

4. COl\lCLLSIONS

A model has been presented for the analysis of the short-term strength of parallel-lay
ropes and bundles of parallel elements in general. The model allows analysis of parallel-lay
ropes with a non-linear stress-strain relationship and permits study of the variability effects
as a result of the scatter in the elements' cross-sectional areas, failure strains, stiffnesses and
slack. The following conclusions can be drawn from the work described in this paper:

(I) The present bundle theory predicts reasonably well the mean strengths of parallel­
lay ropes. Both the longitudinal and the lateral size effects are predicted by the theory.

(2) The variabilities in element stiffnesses. cross-sectional areas and random slacks
affect the bundle strength. The introduction of variable random slack reduces the strength
of the rope (bundle). The scatter in the element cross-sectional area increases the bundle
strength slightly: however, this increase is only significant at very high variability and



Tensile strength of parallel-lay ropes 3587

6 tonne rope; no slack

60 tonne rope; no slack

0.5 tonne rope; no slack

5 tonne rope; no slack

......................... _ __ .

............ ............... _----- .

W ~ ~ W 100 IW
Number of characteristic lengths

.......

2120

2100

os

~ 2080
to
'"~
1;; 2060

"::a
'"::l§ 2040

"::E
2020

2000
0

(a)

840

os 820

~
..c::
to 800

'"~
~
"0

780'"::l
L;

~

"::E
760

740
0

(b)
W ~ ~ W 100 IW

Number of characteristic lengths

Fig. 9 Etlect of length variation on the strength of parallel-lay ropes.

therefore the effect can be considered to be practically insignificant. The effect of the
variability in the stiffnesses has different effects on the ropes; whereas Type G rope gains
strength, Type A rope loses strength with increasing scatter in element stiffnesses.

(3) Increasing the length of the rope reduces the strength; larger ropes lose strength
less rapidly than smaller ones as the length increases. Typically, a 60 tonne Type Grope
loses only about 2% of its characteristic strength over 3 km.
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